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Optimal Contract under Moral Hazard  
with Soft Information†

By Guillaume Roger*

I study a model of moral hazard with soft information: the agent 
alone observes the stochastic outcome of her action; hence the 
principal faces a problem of ex post adverse selection. With lim-
ited instruments the principal cannot solve these two problems 
independently; the ex post incentive for misreporting interacts 
with the ex ante incentives for effort. This affects the shape and 
properties of the optimal contract, which fails to elicit truthful 
revelation in all states. In this setup audit and transfer become 
strategic complements; this is rooted in the nonseparability of the 
problem. (JEL D82, D86)

The standard solution of a moral hazard problem requires the observation of 
some informative signal of the agent’s action. It is then possible to design a 

second-best contract, which is conditioned on that information instead of the actual 
action. When performance is difficult to observe or noisy, the signal may be com-
plemented. Sometimes however performance is not observed at all: an accounting 
report, for instance, is not a direct observation of the state of a firm.

This paper studies exactly this problem: the outcome realization is not observ-
able by the principal, but must be reported by the agent. Then the principal is 
exposed to ex ante moral hazard and adverse selection ex post. The object of the 
paper is to characterize the optimal contract when these two problems interact. 
Bar for the issue of observability, the model mirrors that of a standard moral 
hazard problem. A risk-neutral principal delegates production to a risk-averse 
agent, who relies on a stochastic technology. The agent alone observes the out-
come θ, which must therefore be elicited ex post. Because the principal otherwise 
observes nothing, the contract must include an audit and some (bounded) pen-
alty.1 The model attempts to be faithful to audit as a sampling process, which is 
imperfect.2 Applications are broad-ranging. For example, after hiring the CEO, 
a board often asks of him (her) to report his (her) results while on the job; a 

1 Doornik (2006) notes that penalties are always bounded for courts will not enforce any penalty in excess of 
the damages incurred.

2 For example, financial audits are sampling processes. See the discussion for details.
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regulated firm may be asked to reveal its production cost after investing in an 
 uncertain technology. Kedia and Philippon (2009) also document the pervasive-
ness of “earnings management”—a euphemism for fraudulent accounting—
which arises in the equilibrium of this model.

The paper’s main contribution is to show that audit and transfer are strategic 
complements. More precisely, they respond to exogenous changes by moving in 
the same direction. This departs from standard results of the costly state verification 
literature, which shows they are substitutes. It also departs from the standard litera-
ture on moral hazard, where monitoring and incentives are substitutes.3 The more 
powerful the ex ante incentives for effort (i.e., the steeper the transfer function with 
respect to the outcome), the more attractive is the option to manipulate information 
ex post, especially when it is bad. Therefore the more accurate must the audit be. Yet 
the transfer function must remain steep enough to generate ex ante incentives in the 
first place. This is the fundamental conflict of this paper.

This work is closely connected to that of Mookherjee and Png (1989)—hence-
forth, MP—who show that with enough instruments, the twin problem of moral 
hazard and ex post adverse selection can be treated separately. More precisely, 
separability allows for ex post truthful revelation without any consequence on 
the incentive device used to solve the ex ante moral hazard problem. Their con-
nection becomes moot and the moral hazard problem can be solved in stan-
dard fashion, yielding standard results. The analysis of such interaction has 
received scant attention in economics, possibly because the Revelation Principle 
(applied by MP) is too powerful in some sense. Indeed the accounting literature 
roots misreporting of information in some failure of the Revelation Principle 
(e.g., Arya, Glover, and Sunder 1998 or Demski and Frimor 1999). I suggest a 
different route.

The starting premise is that the real world does not accord with the results of 
MP; agents do mislead their principal. For example, Bally Total Fitness, a large 
chain of fitness clubs, fired its controller and treasurer, then its CFO, for misleading 
accounting in 2005. More recently, Howie Hubler, a “headstrong” trader at Morgan 
Stanley, single-handedly lost the firm $9 billion after covering up his trades, was 
terminated, and yet paid out past boni.4 Thus, a model that systematically predicts 
truthful revelation has limited applicability. Second, the schemes suggested by MP 
are not observed in practice. Executive compensation contracts, for example, may 
specify a diverse array of contingent payments, but usually not a bonus for not mis-
leading shareholders. A third objection is that the transfer (a reward) that is neces-
sary to induce information revelation may be arbitrarily large; it turns the principal 
into a source of money regardless of the value of the productive relationship with 
the agent.

3 “Auditing” is understood to mean observing the output; to observe the agent’s action is to “monitor;” see for 
example Khalil and Lawarrée (1995), who show this is not a trivial distinction. There is no monitoring in this model, 
only auditing.

4 Bally’s executives were not subject to legal proceedings of any kind, neither was Hubler, as noted at motley.com  
and in The Big short by Michael Lewis.

motley.com


www.manaraa.com

voL. 5 no. 4 57roger: contract theory

In this paper, complete truth telling can never be an equilibrium.5 Furthermore, 
when truthful revelation is possible for at least some states, the agent misreports 
in the worse states, where the incentive is strongest and the cost is lowest. The 
reason is nonseparability: a single transfer is used to solve the ex ante and the 
ex post  problems. This is not enough to disentangle them and introduces a funda-
mental tension between ex ante effort provision, which requires a state-contingent 
compensation, and ex post information revelation, which is best addressed with a 
constant transfer. The interaction of these two problems implies that the optimal 
transfer function is “option-like.” It must satisfy an implicit limited liability con-
straint (because of the bounded penalty), which creates systematic incentives for 
message inflation. This option shape accords well with many real-life contracts.

The papers closest to this one are MP and Kanodia (1985). Both consider a com-
bination of moral hazard and ex post adverse selection with no observability. MP 
combine a Grossman-Hart (1983) model with an ex post revelation mechanism. The 
principal may use a transfer for each of the moral hazard and the adverse selection 
problems; the latter is a reward (by limited liability) that may be arbitrarily large. In 
the present paper, the principal can use only one payment, which also accords well 
with real-life contracts.6 Border and Sobel (1987) construct an audit mechanism 
with endogenous penalties. The optimal probability of audit varies in the messages 
sent; truthful revelation obtains with arbitrarily large penalties (and ignoring the 
agent’s participation decision, as pointed out by MP).7 In all these papers, auditing 
is perfect but the principal controls the probability of running an audit. Here the 
audit is imperfect and closer to sampling, which is what real financial audits do, and 
has been modeled by Bushman and Kanodia (1996) or Demski and Dye (1999). 
Crocker and Morgan (1998) construct an optimal insurance contract in the presence 
of fraud: actual damages may be inflated ex post. In equilibrium there is always falsi-
fication, as here. It is necessary to induce separation, which is a condition of efficient 
insurance; here separation is a condition of effort. The payment scheme internalizes 
this fraud and is low-powered, as in this paper. Doornik (2006) considers the oppo-
site problem: the principal only observe the outcome of the agent’s effort and may 
renegotiate at the interim stage. The interim offer is informative; the equilibrium is 
Perfect Bayesian. A rejection triggers costly legal enforcement, which does occur 
with some probability in equilibrium. This is sufficient to be unable to implement 
the first best in spite of the agent risk neutrality. The contract is a one-step bonus: a 
(extreme) form of option. An “option-like” contract is derived by Jewitt, Kadan, and 
Swinkels (2008)—henceforth, JKS—when the agent must receive a minimum pay-
ment: it pays a constant wage below a threshold, and an increasing transfer beyond. 
In this paper bounded penalties imply a limited liability constraint; the contract 
takes a similar shape.

Close in spirit, Gromb and Martimort (2007) let (an) expert(s) search for some 
information by exerting some effort, who then has (have) to disclose it to the 

5 Whether any truthful revelation occurs is determined in equilibrium; it depends on the whole contract.
6 MP’s model yields a quirky byproduct: the agent strictly prefers being audited. This owes to the construction 

of the revelation constraint, which implicitly only allows reward to be offered for truth telling.
7 In Khalil (1997), truthful revelation obtains through a standard direct revelation mechanism. Auditing relaxes 

the agent’s incentive constraint; the principal trades off the audit cost with the information rent.
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principal. To overcome the moral hazard problem, the expert’s incentive con-
tract must be made state-dependent. Like in this paper, this very fact introduces 
adverse selection. However, a contract can be conditioned on the final outcome, 
unlike here. For the purpose of this discussion, Krähmer and Strausz (2011) 
adopt a similar construct in the context of pre-project planning. Malcomson 
(2009) studies a problem where the agent acquires soft information that may be 
used by the agent to make a decision yielding a verifiable outcome. The principal 
may have incentives to distort the decision rule away from the first-best to foster 
information acquisition. Levitt and Snyder (1997) develop a contracting model 
in which the agent receives an early (soft) signal about the likely success of the 
project. With appropriate early information, the principal can decide whether to 
shut down or continue. To obtain this information, he must commit to shut down 
less frequently than the unconstrained solution prescribes. The eventual outcome 
is fully observed by the principal, hence contractible. In all these papers, infor-
mation is still exogenously given although ex ante unknown to the agent. Here the 
private information emerges endogenously.

After introducing the model, Section II deals with the ex post information revela-
tion problem. Next I characterize the optimal contract; Section IV explores some 
properties. Section V presents an extensive discussion. The proofs and some of the 
technical material are relegated to the Appendix.

I. Model

A principal delegates a task to an agent who undertakes an action a ∈  ⊂  핉 + .  
The action’s cost c(a) is increasing and convex, and yields a stochastic outcome 
θ ∈  [  θ _ ,  

_
 θ   ]  ≡ Θ ⊂ 핉 with conditional distribution F(θ | a) and corresponding density 

f  (θ | a) > 0. The density f  (θ | a) satisfies the MLRP:  f a /f is nondecreasing, concave 
in θ; therefore F(θ | a′  ) stochastically dominates F(θ | a) in a first-order sense when 
a′ > a. I make the additional assumption that  F  a  ( F −1 (θ | a)) is convex in (θ, a).8 The 
agent alone observes the outcome θ and reports a message ω ∈ Ω to the principal, 
whereupon she receives a transfer t. Her net utility is given by u(t, a) = v(t) − c(a), 
where v : 핉 ↦ 핉 is a continuous, increasing, concave function with v(0) = 0. The 
principal receives a net payoff s(t, θ) = θ − t. If the true state θ were observable by 
the principal, the model would collapse to the textbook moral hazard problem. The 
principal can commit to the contract.

At the stage of information revelation, effort is sunk so all that matters is the util-
ity v (t), which can only be conditioned on the message ω. Given the monotonicity of 
v (t), either all types pool to the same message if t (ω) is increasing, or have no effort 
incentive at all if it is constant. Auditing restores a measure of ex post observability; 
it has zero marginal cost. However, it is imperfect and uncovers misreporting with 
probability p (ω − θ; α), where p : 핉 ↦ [0, 1] is a continuous, differentiable func-
tion in both arguments and p (0; α) = p ( ⋅ ; 0) = 0.9 This breaks the monotonicity 
of v (t). The technology p ( ⋅ ; α) is costly to acquire; it is drawn from a family  of 

8 This is sufficient for the Concave Local Informativeness condition of JKS.
9 This is akin to a sampling process, as in Bushman and Kanodia (1996).
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increasing, at least weakly, convex functions parametrized by an investment α at cost 
k (α), increasing and convex. The parameter α affects the slope of p ( ⋅ ; α) at 0, that 
is, the precision of the audit. Auditing remains imperfect: ∀α, ∂ p(z | α)/∂ z  | z=0  < ∞ 
but there are no type-II errors. If discovered the agent receives nothing.10 With 
this construction the expected utility function of an agent at the revelation stage is 
u = v (t (ω)) [ 1 − p (ω − θ; α) ] . Hence,

(1)    ∂ u _ 
∂ t

   = v′  [ 1 − p ]  ≥ 0;     ∂  2  u _ 
∂  t ∂  θ

   = v′ p′ ≥ 0

is a sorting condition on the ex post expected utility of the agent, akin to the Spence-
Mirrlees condition. The timing is almost standard:

 •	 	The principal offers a contract  = 〈Ω, t(ω), p (ω − θ; α)〉 made of a mes-
sage space, a transfer function and an audit technology.

 •	 	The agent accepts or rejects the contract. If accepting, she also chooses an 
action a.

 •	 Action a generates an outcome θ ∈ Θ observed by the agent only.
 •	 The agent reports a message ω ∈ Ω.
 •	 Audit occurs (because it has 0 marginal cost).
 •	 Transfers are implemented and payoffs are realized.11

II. Information Revelation

This section focuses on information transmission. It takes advantage of some 
results contained in a companion paper (Roger 2012) that are briefly explained. 
Then it is shown that truthful revelation in any arbitrary state θ amounts to a condi-
tion relating the transfer function t( ⋅ ) to the probability p ( ⋅ | α). This defines three 
regimes: complete, partial, or no information revelation. The dependence on α is 
suppressed where convenient.

A. Preliminaries

Consider a mechanism with message space Ω and suppose that the transfer func-
tion t (ω) is increasing and a.e. differentiable.12 The agent sends a message ω such 
that ma x ω∈Ω  v (t(ω)) [ 1 − p (ω − θ) ] , i.e., ω (θ) solves

(2)  v′ t ′ (ω) [1 − p (ω − θ)] − v (t (ω)) p′ (ω − θ) = 0.

10 See Section V for a discussion of these two assumptions.
11 That payoffs are realized needs not imply that they are observed by the principal, as in the accounting exam-

ple. Mathematically, not observing θ does not prevent maximizing 피[s(t, θ)] or any other monotone transformation 
피[s(t, g(θ))]. See also Grossman and Hart (1983, remark 4).

12 This is not a restriction: p ( ⋅ ; α) is continuous, so must be t ( ⋅ ). See Roger (2012).



www.manaraa.com

60 AMErIcAn EconoMIc JournAL: MIcroEconoMIcs novEMBEr 2013

Condition (2) must bind for some ω because p ( ⋅ ) is monotonically increasing. For a 
mechanism to be truthful, v (t (θ)) ≥ v (t (ω)) [ 1 − p ] , or v (t (θ)) = ma x ω∈Ω  v (t (ω))[1 −  
p(ω − θ)]. Using (2), this is equivalent to there being some  ̃ θ   such that

(3)  v′ t ′ ( ̃ θ  ) = v (t (ω))  | ω= ̃ θ    ⋅ p′ (0).

Roger (2012) establishes that (i) a direct mechanism where Ω = Θ induces a measure  
of pooling and (ii) there is no loss of generality in restricting attention to a separat-
ing mechanism that uses an enlarged, but simple, message space labeled  ̂    .13 That 
is, choosing the appropriate message space becomes part of the design problem, 
unlike instances where attention may be restricted to direct mechanisms without 
loss. That sufficient message space is defined as follows: consider some set  such 
that Θ ⊂  ⊂ 핉. Let

   ̂  m   (θ, t) =  arg max   
m∈

   v (t (m)) [ 1 − p (m − θ) ] ,

then we have  ̂     ≡  {  ̂  m   (θ; t) ∈  |  ̂  m   ∈ arg max u ∀θ ∈ Θ } . The mapping  ̂  m   is 
a function of the transfer t, which is fixed and committed to at the stage of infor-
mation revelation. Already we see that information revelation and ex ante incen-
tives interact. Lemma 8 (in the Appendix) shows there is no better message space 
than  ̂    .14

Partial pooling may arise in a direct mechanism because all agents may have 
incentives to misreport upwards but the top type cannot report more than  

_
 θ  ; this 

applies to a positive measure of agents. This partial pooling dampens ex ante 
incentives because the contract does not sufficiently discriminate between out-
comes: the compensation scheme is flat for a range of outcomes. A completely 
separating mechanism always dominates. Furthermore, removing some messages 
from the set  ̂     also does not help. It always renders the contract more expen-
sive to the principal. If  ̂     is truncated from below, the agent must overstate her 
optimal message for some realization (which is risky and therefore costly). If 
some interior messages are prohibited, the ex post expected utility u is no longer 
monotonic in θ. But any nonmonotonic scheme is dominated by a monotone one 
(Carlier and Dana 2005).

B. Degrees of Information revelation

Equation (3) embodies a requirement on the precision of the audit at 0; that is, 
it defines a subset   0 (t) ⊆  of audit functions that can elicit truthful revelation 
for at least some values of θ, given the transfer t. Condition (3) is necessary and 
sufficient for truthful revelation at  ̃ θ  , which does not mean it holds for all values. 

13 Kartik (2009) derives similar results in a model of almost cheap talk, for essentially the same reasons. See 
the discussion.

14 This observation stems from working through an anonymous referee’s comment, whom I must thank.
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There may be three cases of interest; which of these the principal faces is deter-
mined in equilibrium.

Case 1: (Partial Truthful Revelation)
This corresponds to the condition v′ t ′ ( ̃ θ  )  = v (t ( ̃ θ  )) p′ (0) for some value  ̃ θ   ∈ 

 (  θ _ ,  
_
 θ   ) . If v(t( ⋅ )) is concave, then v′ t ′  | θ≥ ̃ θ    ≤  v (t ( ̃ θ  ))p′ (0) and truth telling obtains 

above  ̃ θ  . Similarly, v′ t ′  | θ< ̃ θ    > v (t ( ̃ θ  ))p′ (0) and truth telling is out of reach below  ̃ θ   
(so  ̂  m  (θ) > θ). The converse is true for v (t ( ⋅ )) convex. Figure 1 (left panel) depicts 
an interior example of  ̃ θ   when v (t ( ⋅ )) is a concave function.

The next two cases are special instances of the first one.

Case 2: (Truthful Revelation) 
Condition (3) is satisfied for all values of the private information θ; more pre-

cisely, ∀θ, v′ t ′ (θ) ≤ v (t (θ)) p′ (0). Jointly with the transfer, the audit technology 
p( ⋅ ; α) is sufficiently precise so ∀θ,  ̂  m   (θ) = θ.

Case 3: (No Truthful Revelation) 
Condition (3) fails to hold anywhere on the range Θ, i.e., ∀θ ∈ Θ, v′ t ′ (θ) > 

v (t (θ)) p′ (0). This is shown on the right panel of Figure 1. This problem is the reason 
for constructing a separating mechanism.

This rich array of outcomes obtains because of nonseparability of the twin prob-
lem of ex ante moral hazard and ex post adverse selection. That nonseparability 
stems from the combination of the imperfect audit technology and the limited num-
ber of instruments. It implies a fundamental tension between ex ante effort incen-
tives, which require a state-contingent transfer, and ex post information revelation 
that is best addressed with state-independent transfers. The consequence is that in 
Cases 2 and 3, an agent who is induced to exert any effort necessarily misreports 
her private information with positive probability. Indeed, rearrange the truth-telling 
condition as p (ω − θ) ≥ 1 − v (t (θ))/v (t (ω)): for a given α, this inequality is more 
difficult to satisfy when t( ⋅ ) is steep.

θ θθ θ
Θ

θ

θ̃ Θ

m(θ)

m(θ)

M

θ θ

m(θ )

Figure 1. Optimal Messages Above and Below  ̃ θ   (left);  
with Extended Message Space (Right)
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One last remark is in order. There may exist many contracts satisfying t ′ ≥ 0: 
some may include jumps, there may be intervals on which t ′ = 0 and so on, with 
implications for the message  ̂  m  . It is not obvious that  ̂  m   must be continuous, as 
it is depicted in Figure 1. To see why, consider a scheme t ( ⋅ ) that is flat on some 
range, say, on  Θ f  ≡  [  θ 1 ,  θ 2  ] . If  ̃ θ   ≥  θ 2  the agent misreports her information on  
Θ f  as anywhere else below  ̃ θ  . If  ̃ θ   ≤  θ 1 , she may face the conditions v′ t ′ ( θ 1 ) ≤  
v (t ( θ 1 )) p′ (0; α) but v′ t ′ ( θ 2 ) ≥ v (t ( θ 2 )) p′ (0; α), i.e., t ( ⋅ ) may be steeper at  θ 2  than 
at  θ 1  and (3) is reversed. Then one moves from truthful revelation above  ̃ θ   and 
below  θ 1  to misreporting from  θ 2  on, i.e., there is a jump in the optimal message 
(because v (t ( ̃ θ  )) ≥ (1 − p) v (t (m ( ̃ θ  ))) at  ̃ θ   but v (t ( θ 2 )) < (1 − p) v (t (m ( θ 2 )))—
this is shown in Figure 2.

III. Characterization

To proceed, I first seek to understand the behavior of the contract for some fixed 
audit technology p ( ⋅ ; α). Then I endogenize α, to which all other endogenous vari-
ables also respond, and optimize fully over the whole set of instruments t, a, α. 
I use the first-order approach.15

The ensuing analysis may be problematic in that the agent’s utility

u = 
⎧
⎨
⎩

v  ( t (θ) ) , θ ≥  ̃ θ  ;

 ( 1 − p (m − θ) )  v  ( t (m) ) , θ <  ̃ θ  

may not be smooth, nor even continuous, at  ̃ θ  . It turns out that it must be both; the 
formal statement takes the form of Lemma 2 in the Appendix. From this it follows 
that the optimal message is also a smooth function of θ at  ̃ θ   by the Theorem of 

15 See Jewitt (1988) or Conlon (2009) for validations; Jewitt (1988) specifically for sufficient conditions.

θ

θ

θθ̃ θ1 θ2 θ1 θ2θ̃

m(θ)

Θ

t(‧)

Θ

Figure 2. Contract (left) May Induce Jump(s) in the Optimal Message (right)
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the Maximum (see Figure 1), so the regime change at  ̃ θ   is “smooth.”16 Defining  
t:  ̂     ↦ 핉, the principal’s program is

PROBLEM 1:

    max   
α, t, a

   ∫  
 θ _ 
  
 ̃ θ  
   [ x − (1 − p  (  ̂  m  (x) − x; α) )  t  ( m (x) )  ]  dF (x | a) 

    +  ∫  
 ̃ θ  
  
 
_
 θ  
   [ x − t (x) ]  dF(x | a) − k (α)

s.t.

(4)   ̂  m   (θ) =  arg max   
m∈

    ( 1 − p (m − θ) )  v  ( t (m) ) 

(5)   ∫  
 θ _ 
  
 ̃ θ  
  v  ( t  (  ̂  m   (x) )  )   [ 1 − p  (  ̂  m   (x) − x )  ]  dF (x | a) 

   +  ∫  
 ̃ θ  
  
 
_
 θ  
  v  ( t (x) )  dF (x | a) − c (a) ≥ 0

(6)   ∫  
 θ _ 
  
 ̃ θ  
  v  ( t  (  ̂  m   (x) )  )   [ 1 − p  (  ̂  m   (x) − x )  ]  d F  a  (x | a) 

   +  ∫  
 ̃ θ  
  
 
_
 θ  
  v  ( t (x) )  d F  a  (x | a) = c′ (a),

where  ̃ θ   ≡  ̃ θ  ( p ( ⋅ ; α), t, a). The ex post message may be entirely truthful (only 
drawn from Θ), not at all (and only drawn from  ̂    ), or some of both depending  
on where  ̃ θ   lies.17 From an ex ante standpoint the principal must account for any 
of these possibilities, which the objective function and the constraints reflect. 
Condition (4) is the agent’s information revelation constraint—the novelty in this 
paper. Let λ be the Lagrange multiplier of constraint (6), μ that of (5) and  t  o  denote 
the solution of the following conditions.

LEMMA 1: Fix a and α. The first-order conditions of Problem 1 are given by

(7)    1 _  
v′  ( t  (  ̂  m   (θ) )  ) 

   = μ + λ   
 f  a  _ 
f
   ;

16 The other potential source of discomfort is that highlighted in Figure 2, i.e., a jump away from truth telling 
above  ̃ θ  ; this is addressed later.

17 Note that although the problem does not specify a distribution over the message space  ̂    , F(θ | a) is still the 
relevant distribution because  ̂  m  (θ) is injective. For details, see Roger (2012). More comprehensively, the program 
allows for jumps as described in Section II; the principal’s objective is then

  ∫   θ _   
 ̃ θ     [ x −  ( 1 − p  ( m (x) − x; α )  )  × t  ( m (x) )  ]  dF (x | a) +  ∫  

 ̃ θ  
   θ 2    [ x − t (x) ]  dF (x | a)

     +  ∫   θ 2   
   θ  
    [ x −  ( 1 − p  ( m (x) − x; α )  )  t  ( m (x) )  ]  dF (x | a) +  ∫  

   θ  
   

_
 θ     [ x − t(x) ]  dF (x | a) − k(α), 

with a jump at  θ 2  and two thresholds  ̃ θ  ,    θ  —and the agent’s utility is similarly modified. The analysis extends 
immediately.
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for θ <  ̃ θ  ; and

(8)    1 _ 
v′  ( t (θ) ) 

   = μ + λ   
 f  a  _ 
f
   ;

for θ ≥  ̃ θ  , where  ̂  m  (θ) is determined by (4) and μ, λ ≥ 0.

The case of complete information revelation is obtained by extending  ̃ θ   to  θ _ . Then 
the first-order condition is standard; (8) holds over Θ. Case 3 corresponds to  ̃ θ   ≥  

_
 θ  .

A. Incentives under soft Information

The agent’s incentives, and the principal’s response, are altered in two ways that 
are extensively explored in Roger (2012). This section presents a brief summary. 
First, the potential for misrepresentation affects the agent’s incentives in Problem 1. 
Denote by    a   the action solving  ∫  Θ   

   v(t(x)) d F  a (x | a) = c′(a)—the standard moral 
hazard constraint. Formally,

LEMMA 2: Fix the transfer function t across models. Whenever  ̃ θ   ≥  θ _ , the agent 
selects an action  a ∗  solving (6) below the action    a  .

For a given transfer schedule the agent’s moral hazard constraint is hardened 
because her expected payoff is higher in any state thanks to message inflation—
so the marginal benefit of effort is lower. Very low outcomes are tempered by the 
option to exaggerate them; they do not provide strong incentives.

Second, the ex post penalties act like a default payment that interacts with 
the ex ante incentives. Indeed, the agent can always do better than accepting a 
negative transfer: she can simply take the lottery { p, 1 − p} over 0 and some 
positive v(t(m)) by exaggerating her message. In the words of JKS, this penalty 
becomes “payment binding;” that is, it becomes a limited liability constraint. The 
transfer function is modified in consequence, as in JKS. Because the ratio  f a /f 
is monotonic and  피 Θ  [    f a /f  ]  = 0, for some action a there exists some  θ a  such that  
 f a ( θ a  | a)/f  ( θ a  | a) = 0.

LEMMA 3: Fix a. The optimal transfer  t  o  takes the form

  1 _ 
v′ (  t  sB  ) 

   = 
⎧
⎨
⎩

κ, ∀  ̂  m  (θ) ≤  θ  a  ;

κ + λ    f  a 
 _ f   , ∀  ̂  m  (θ) >  θ  a  ,

where κ ≥ 0, κ ≠ μ and  ̂  m  (θ) solves (4). Furthermore, the multiplier λ of the moral 
hazard constraint (6) is strictly positive.

JKS call this kind of scheme option contracts. The constant κ corresponds to the 
minimum payment the agent must receive ex post. It is evident that the option con-
tract generates weaker incentives for the agent because failure does not carry great 
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consequences. For the principal that means that a high action becomes more expen-
sive to implement. To complete the description of the transfer function,

PROPOSITION 1: The optimal transfer function  t  o  solving Problem 1 is continu-
ous, nondecreasing over Θ and described by Lemma 3; in particular, it :

 (i) is continuous but with a kink at  θ  a ;

 (ii) is nondecreasing concave for all θ above  θ  a ; and

 (iii) pays zero below  θ  a  .

Figure 3 depicts the transfer function. The zero payment below  θ  a  stems from 
the zero ex post penalty. Notice that when  ̃ θ   is interior,  t  o  is still continuous at  
 ̃ θ  . The reason is that  ̂  m  (θ) smoothly converges to θ at  ̃ θ   because the function 
u is smooth. (See the left panel of Figure 1.) An immediate consequence of 
Proposition 1 is

COROLLARY 1: completely truthful revelation (case 2) can never occur in 
equilibrium.

Because the optimal contract pays zero on the range  [  θ _ ,  θ  a  ] , the agent is strictly 
better off taking the lottery { p, 1 − p} over zero (if detected) and a positive payoff 
obtained by reporting  ̂  m  (θ) > θ. Furthermore, because the optimal transfer function 
is concave, misreporting always occurs “at the bottom” (see Case 2). Indeed, the 

θθS
a
BθS

aθ m(θ)

tO(m(θ))

tS(θ)

t(‧)

Figure 3. Transfer Functions—Standard (dashed) and Distorted
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agent with the strongest incentives to misreport is the one in the worse states. It is 
also the agent whose cost of misreporting is the lowest. From the collection of the 
previous results, it is also true that:

COROLLARY 2: The optimal message  ̂  m  (θ) is everywhere continuous on Θ; i.e., 
there are no jumps.

This follows from the fact that the optimal transfer function  t  o  is monotone 
strictly concave from  θ  a  on. There can be no pair  θ 1  <  θ 2  such that v′t ′( θ 2 ) > v′t ′( θ 1 );  
thus condition (3) cannot be simultaneously holding at  θ 1  but reversed at  θ 2 . 
Furthermore, there can be only at most one threshold  ̃ θ  , and the three simple regimes 
described in Section II are exhaustive.

B. optimal contract

As part of the optimal contract the principal selects his audit technology 
p( ⋅ ; α) ∈  by choice of α. This may have two effects. First, fixing t( ⋅ ) and a, it may 
alter the degree of information revelation, i.e., the cutoff  ̃ θ   (Cases 1 to 3). Second, 
t( ⋅ ) and a are endogenous variables, so they too adjust to a change in α. The optimal 
contract balances all these effects.

PROPOSITION 2: The optimal contract is characterized by:

 (i ) a continuous transfer scheme     t  o  = 
⎧
⎨
⎩

 t  o   (  ̂  m   (θ) ) , θ <    θ  ;
 determined by

 t  o  (θ), θ ≥    θ  ,
   

Proposition 1, and conditions (7) and (8) on the relevant ranges;

 (ii ) an action  a  o  solving the first-order condition

  (9)  ∫  
 θ _ 
  
 ̃ θ  
   [ x − t  (  ̂  m   (x) ) (1 − p) ]  d F  a  +  ∫  

 ̃ θ  
  
 
_
 θ  
   [ x − t(x) ]  d F  a 

     + λ  [  ∫  
 θ _ 
  
 ̃ θ  
  v  ( t  (  ̂  m   (x) )  ) (1 − p) d F  aa  +  ∫  

 ̃ θ  
  
 
_
 θ  
  v  ( t (x) )  d F  aa  − c″(a) ]  = 0

 (iii ) and an audit investment  α o  =  α  1  o  +  α  2  o , where  α  1  o  solves

  (10)  v′ t ′ ( θ _ ) = v  ( t ( θ _ ) )  p′  ( 0;  α  1  o  ) 

  and  α o  ≥  α  1  o  solves

  (11)  ∫  
 θ _ 
  
 ̃ θ  
  t ( ̂  m  )  p  α  dF (x | a) + λ  ∫  

 θ _ 
  
 ̃ θ  
  v  ( t ( ̂  m  ) )   p  α  d F  a  (x | a) = k′ (α).

The cutoff  ̃ θ   ∈  [  θ _ ,  
_
 θ   ]  is determined by (3) given  t  o ,  a o ,  α o .
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The threshold  ̃ θ   is free to lie at either boundary or to be interior; it is endog-
enous to the contract and so is the regime one operates under. The first two items of 
Proposition 2 resemble standard ones. The last one determines the level of invest-
ment in the audit technology. It allows for  α  2  o  to be zero, that is,  ̃ θ   =  θ _ . If so, the 
technology is sufficiently inexpensive (or equivalently, precise) for condition (3) 
to hold at  θ _ . Condition (10) thus pins down the smallest investment necessary for 
truthful revelation. In that case, the transfer is determined by (8) and (9) collapses 
to the standard expression; the pair  t  o ,  α o , together with the zero penalty, are such 
that they compel truthful revelation. If  α  1  o  is not sufficient, the investment may be 
increased from  α  1  o  to  α o  (i.e., by  α  2  o ), and this entails a trade-off given by (11); 
that is, further distortions arise. The total marginal benefit (LHS) includes saving 
on undue transfers, as well as relaxing the moral hazard constraint. When truthful 
revelation is impossible, the transfer is determined solely by (7) and (9) is modified 
by extending  ̃ θ   to  

_
 θ  . Truth telling cannot be guaranteed (unlike in MP), because  t  o ,  

α o  are jointly determined. Whether truthful revelation obtains does not just depend 
on the audit procedure because the problems of moral hazard (ex ante) and adverse 
selection (ex post) are meshed.

IV. The Relationship between Audit and Transfers

Because both the transfer t and the audit investment α are costly to the principal, a 
question of practical importance is to understand how they relate. Indeed, the costly 
state verification literature (as MP or Border and Sobel 1987 among others) establishes 
and exploits the fact that transfer and audit are substitutes. Similarly, we know that 
monitoring and transfers are substitutes in standard moral hazard problems. On the 
other hand, we know that the expected cost of effort defined as T (a) ≡  ∫  Θ   

   t(x) dF(x | a)  
is increasing, concave in a (see Conlon 2008). So, too, in this model:

   T  o  (a) ≡  ∫  
Θ
  

 
    t  o   ( m (x) )  [ 1 − p  ( m (x) − x )  ]  dF (x | a)

 =  ∫  
 θ _ 
  
 θ  a 

   t  o   ( m (x) )  [ 1 − p  ( m (x) − x )  ]  dF (x | a)

 +  ∫  
 θ  a 
  

 
_
 θ  
   t  o   ( m (x) )  [ 1 − p  ( m (x) − x )  ]  dF (x | a)

 = 0 +  ∫  
 θ  a 
  

 
_
 θ  
   t  o   ( m (x) )  [ 1 − p  ( m (x) − x )  ]  dF (x | a)

follows the same properties (for p( ⋅ ) is weakly convex and the product of two con-
cave functions  t  o  and [1 − p] is concave). So at face value it is not clear how  t  o  and  
α o  relate. Indeed, in this model, α is used to elicit information ex post: the better the 
audit, the less over-reporting and the lower the transfer in a given state. But we know 
this relaxes the moral hazard constraint, which induces a higher action. This allows 
for a higher transfer in any state (as the principal reoptimizes). Because all these 
variables are jointly determined, to make a statement about their behavior I run a 
comparative statics exercise on the primitives of the problem.
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PROPOSITION 3: The transfer  t  o  and the audit investment  α o  both:

 (i ) decrease in the dispersion of the distribution F (in the sense of sosD);

 (ii ) decrease in the agent’s risk-aversion;

 (iii ) decrease as the cost of effort (c(a)) increases;

 (iv ) increase in the principal’s payoffs.

Thus, high-power contracts are necessarily accompanied with a large enough 
investment in the audit technology. Conversely, it is because the audit is sufficiently 
precise that the contract can be high-powered. Increasing t in isolation in response 
the the moral hazard problem is destructive; it requires a simultaneous increase 
in audit.

This claim may be counterintuitive; it stems from the nonseparability of the prob-
lem and is explained as follows. In a costly state verification problem the transfer’s 
only purpose is to provide incentives for information revelation (either as a penalty 
or a reward). Because transfer and audit enter the incentive constraint multiplica-
tively they naturally are substitutes. In fact, the Maximum Punishment Principle 
of Baron and Besanko (1984) tells us that only one transfer is necessary (the most 
extreme one). Here the transfer’s primary purpose is to induce effort, so it must be 
upward sloping. This is the very source of adverse selection: it is this responsiveness 
of the transfer to the state that generates the incentives to manipulate information. 
So the stronger are these incentives, the more beneficial is the audit.18

From a practical standpoint, Proposition 3 together with condition (3) suggest it 
may not be the lack of audit that is the culprit in corporate embezzlement and earn-
ings manipulation. There is little doubt that firms of that nature are subject to audit. 
Rather the audit may not have been sufficient given the incentives offered.

V. Discussion

A. Limited Liability

In this model bounded penalties act like a limited liability constraint, which 
drives the shape of the optimal contract. Introducing a “proper” limited liability 
constraint on transfers would not change the substance of the paper. Consider such 
a constraint t ≥  t _  and some penalty −l ≤ 0. The relevant constraint for the agent 
facing some bad state θ is max {   t _ , −l ⋅ p }: only one constraint really matters. In this 
paper I effectively let the constraint on penalties be the relevant one. This may not be 
to an entirely trivial effect in that even a wealthy agent may be shielded by bounded 
penalties, but it does fit the examples of the introduction.

18 A friend of mine sits on a few boards of very large, publicly listed corporations. To her this statement is 
equivalent to an economist hearing that agents respond to incentives.
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B. other Penalties

The paper purposefully bounds penalties; left unconstrained they necessarily lead 
to truthful revelation (unless they conflict with a limited liability constraint, which is 
essentially equivalent to the present model). Here I discuss two potential modifica-
tions in this respect.

Harsher Penalties.—The model could allow for penalties −l < 0. Then the 
information revelation condition (2) would become v′ t ′(1 − p) − p′(m − θ) 
×  [ v(t(m)) − v(−l) ]  = 0 and clearly (i) there would be less exaggeration and (ii) for 
some l large enough,  ̂  m  (θ) = θ ∀θ (no misreporting). That is, one would revert to 
model closer to that of MP.19 If l were not too large, the problem would remain as 
here, albeit muted. The only significant difference is that the threshold  θ  a  would be 
such that  f  a /f would be negative.

Penalties conditioned on offense.—The Maximal Punishment Principle (see Baron 
and Besanko 1984, now MPP) asserts that the penalty should be as severe as possible, 
and thus swiftly rules out conditioning it on the offense (e.g., small deviations from 
the state θ could be met with fines that commensurate). Setting the MPP aside, sup-
pose that the principal instead uses some fine φ ≡ φ( ̂  m   − θ) where φ(0) = 0. The 
agent expected utility then becomes u = (1 − p)v(t( ̂  m  )) + pv(t( ̂  m  ) − φ( ̂  m   − θ)) 
and one can see that the truth-telling condition (3) turns into

  v′ t ′(θ) = p′ (0)  [ v  ( t ( ̂  m  ) )  − v  ( t ( ̂  m  ) − φ ( ̂  m   − θ) )  ]   |  ̂  m  =θ  + p ( ̂  m   − θ; ⋅ ) v′ φ′  |  ̂  m  =θ   ,

i.e., v′ t ′(θ) = 0. In other words, driving a wedge between the transfers when the 
agent reports truthfully and does not, is essential. That is, φ( ⋅ ) must be discon-
tinuous at 0. How large a wedge (discontinuity) is discussed above at some length. 
The MPP applies in this model as in many others because the audit generates no 
false negatives.

C. Audit Technology

In this paper the accuracy of the audit is conditioned on the the magnitude of the 
misreporting. The literature has considered other approaches such as conditioning the 
precision of the audit on the message alone. Absent additional punishments or rewards 
(as in Border and Sobel 1987 or MP) this cannot deliver separation, let alone truth-
ful revelation. To see why, rewrite the audit technology as p(ω; α); this may also be 
interpreted either as a probability of running the audit, given some message ω, as 
in those papers. Then truth telling requires v(t(θ)) = ma x ω∈Θ  v(t(ω)) [ 1 − p(ω) ] , i.e., 
v′ t ′(θ) = 0; hence the need for fines or rewards in both these papers, and many others.

Furthermore, according to most accounting standards (e.g., US GAAP or the 
AASB in Australia), an audit seeks to provide a reasonable assurance that statements 

19 Noting that here truthful revelation would obtain immediately from the exogenous penalty.
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are free from material errors. As a result, a sampling procedure is usually adopted by 
financial auditors, who can verify the details of the transaction(s). This justifies the 
absence of type-II errors in the process.20 Note also that the accuracy of this verifica-
tion process cannot be connected to the message received, but rather to its veracity. 
Statistical sampling is also followed by ISO-accredited companies for the purpose 
of quality assurance.21 In either case, the audit is always performed. The technology 
p( ⋅ ; α) displays exactly these characteristics.

D. Participation Fee and Binding constraint

The agent receives an ex ante rent in this model; the participation constraint 
fails to bind. This could be addressed with an ex ante participation fee, say ϕ. 
Then a contract entails a tariff (t( ⋅ ), ϕ) and the agent’s expected utility reads 
u = (1 − p)v (t( ̂  m  ) − ϕ) + pv (−ϕ) where v (−ϕ) < 0. The truth-telling condi-
tion (3) becomes v′ t ′(θ) = p′(0) [ v (t( ̂  m  ) − ϕ) − v (−ϕ) ] . Because v (t( ⋅ ) is con-
cave, v (t − ϕ) − v (−ϕ) > v (t) for each t, so for a fixed transfer function the 
truth- telling condition holds for a larger set of states θ. That is, −ϕ acts like −l 
(see the first paragraph of this discussion). When ϕ is not too large, the informa-
tion revelation problem remains as in the main text.

The main purpose of the fee ϕ is to render the participation constraint binding; 
suppose such a fee does exist. When μ > 0, however, the optimal transfer function 
still retains the same shape. The reason is that ϕ is paid ex ante, so ex post the agent 
still faces a gamble { p, 1 − p} over utilities  { v (−ϕ), v (t ( ̂  m  ) − ϕ) }  versus taking 
some really bad v (t (θ) − ϕ).

If the participation constraint is made to bind, the agent no longer receives 
an ex ante rent but an ex post information rent u( t  o , θ) = [1 − p( ̂  m  (θ) − θ)] 
× v ( t  o ( ̂  m  (θ))) − v ( t  o (θ)) > 0, ∀θ <  ̃ θ  . This rent is decreasing in θ.

E. other Disclosure Models

M-Implementability (Green and Laffont 1986).—These authors study the imple-
mentability of a social choice function when the agent may report a message from a 
set M(θ) ⊂ Θ, where M( ⋅ ) is exogenous and publicly known. The idea is to allow for 
the agent to report small lies (the set M(θ)) around the true state, and characterize 
the set of social choice functions that are truthfully implementable. It may some-
times be optimal for the principal to not induce truthful revelation. This is clearly 
a feature of the present paper, where the principal is better off with a contract that 
allows for reporting outside the type space, and where truthful revelation can never 
occur for at least some states.

20 “If controls are assessed as appropriate and operating as expected then lower levels of substantive testing 
is expected. […] appropriate sampling (either statistically—in total or stratified—or judgementally when a small 
number of items make up much of the volume) is performed and transactions and account balances verified. The 
steps involved include tracing transactions from the general ledger back to supporting documents or from initiating 
documents through to the ledger to ensure that they are appropriately included.” Mark Pickering, Auditor at Deloitte 
Touche Tohmatsu, 1986–91.

21 ISO: International Organization for Standardization.
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Green and Laffont (1986) provide a necessary and sufficient condition—called 
the nested range condition (NRC)—for the agent to report her information truthfully. 
The NRC does not hold in this model, although it corresponds to a game of “uni-
directional distortions with an ordered space” (to use their words)—example a(2) 
in Green and Laffont (1986). Because the agent has a unique optimal deviation for 
each type, the set M(θ) =  { ω | ω ∈ Θ, ω ≥ θ }  (to use their notation) collapses to 
a singleton for each type, whence no nesting condition can possibly hold. This is 
because Green and Laffont (1986) exogenously allow for the agent’s response to be 
a correspondence, whereas here the agent’s optimal message is unique.

Almost cheap Talk (Kartik et al. 2007; Kartik 2009).—Kartik (2009) builds on 
Crawford and Sobel’s (1982) paper and introduces a lying cost k. He finds there 
cannot exist a completely separating equilibrium and that any equilibrium entails a 
measure of message inflation, which is decreasing in the lying cost. Pooling occurs 
because the high types “run out of messages to send,” which is exactly the  problem 
the principal faces if using a direct mechanism (see also Roger 2012). In both papers, 
there exists a critical type, above which pooling occurs. This problem does not arise 
in Kartik et al. (2007) because the message space is unbounded; this is the approach 
I suggest in this paper too.

A large message inflation accompanies a small lying cost in Kartik (2009). This 
maps into a small probability of discovery in this paper, i.e., a poor audit technology. 
Message inflation is not problematic for Kartik (2009) because types are exogenous 
and the receiver anticipates inflation (and adjusts his response). It is costly here 
because it hampers the ex ante incentives for effort.

VI. Conclusion

When a principal cannot observe the outcome of his agent’s action in a moral 
hazard framework and needs to elicit this information from that very agent, he 
faces a problem of ex post adverse selection as well. With limited instruments, this 
introduces a fundamental tension between ex ante incentive, for which a contingent 
transfer is necessary, and ex post incentives, best addressed with a state-independent 
transfer. Type separation (not necessarily truthful revelation) requires the use of an 
ex post audit and penalties.

The ex post adverse selection problem is costly to the principal in three ways: first, 
the agent is able to exaggerate her actual performance and thereby may receive an 
inflated transfer. The principal’s response introduces a first set of distortions. Second, 
because penalties are weak, they act as an implicit limited liability constraint. As a 
result the participation constraint cannot bind (there are rents) and the contract resem-
bles an option. Last, the very fact that the contract entails a region with constant transfer 
implies that complete truthful revelation can never arise in equilibrium. There may be 
partial truthful revelation below a threshold; that is, the agent misreports her informa-
tion in the worse states because the incentive is the strongest and the cost the lowest.

A key result of this paper is that the audit investment and the level of transfer co-
vary. That is, the stronger the incentives offered to the agent, the more she must be 
audited to be kept in check. In light of practical examples drawn from real life, this 
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seems to be an important feature that was so far absent from our extensive literature 
on moral hazard and its applications.

Appendix A: Preliminaries

I begin with a series of Lemmata that address the potential lack of smoothness 
of the agent’s expected utility function u, and others that will be useful throughout.

LEMMA 4: The function u is a.e. differentiable over Θ.

PROOF: 
By application of the Theorem of Lebesgue to a monotonically increasing func-

tion; i.e., by (3), u is monotonically increasing.
Then naturally:

LEMMA 5: suppose a solution m(t; θ) of Foc (2) exists, then

 (i ) this solution is unique;

 (ii ) m(θ) is a.e. differentiable and

 (iii )   dm _ 
dθ   > 0.

PROOF: 
Directly from the sorting condition    ∂  2  u _ ∂  t ∂  θ   = v′ p′ > 0, we know that condition (2) 

admits a unique maximizer when it binds. That m(θ; t) is increasing in θ is imme-
diate from observing that the agent’s optimisation problem is supermodular. I will 
need more than this statement though. Continuity of the solution m(t; θ) follows 
from the Theorem of the Maximum. To show that m(θ, t) is monotonically increas-
ing, rearrange (2) as v′ t ′/v = p′/1 − p, i.e., d ln (v (t(m)))/dm = −d ln (1 − p)/dm.  
Take some θ′ > θ and suppose m (θ′  ) ≤ m(θ). Then p′ (m (θ′  ) − θ′  )/1 −  
p′(m (θ′  ) − θ′  ) < p′ (m (θ) − θ)/1 − p′ (m (θ) − θ), so that d ln (v (t (m (θ′  ))))/dm <  
d ln (v (t (m (θ))))/dm. Therefore v (t (m (θ′  ))) > v (t (m (θ))) and since v( ⋅ ) and t( ⋅ ) 
are monotone increasing, m (θ′  ) > m (θ), a contradiction. The same can be shown 
if taking some θ′ < θ and supposing that m(θ′  ) ≥ m(θ). It follows that m (θ, t) is 
a.e. differentiable, by application of the Theorem of Lebesgue, except at most for 
a finite set of points. Differentiate (2) with respect to θ and rearrange.

In spite of Lemma 4, there may still exist problematic discontinuities, especially 
at  ̃ θ  , and this point is one of particular interest.

LEMMA 6: The function u is continuous and differentiable at  ̃ θ   when  ̃ θ   ∈  (  θ _ ,  
_
 θ   ) .

PROOF: 
I show that u cannot be discontinuous at  ̃ θ   and that by condition (3) it must be 

also differentiable. The proof is written for u concave but also applies with obvious 
adjustments when it is convex. Suppose v (t( ⋅ )) is at least weakly concave; since 
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only upward deviations are of concern, the trouble is that we may have v (t ( ̃ θ  )) <  
[1 − p (m ( ̃ θ   − ε) − ( ̃ θ   − ε))]v (t (m ( ̃ θ   − ε))) for ε > 0, ε → 0. Suppose so, then 
truth telling cannot be an optimal response at  ̃ θ  . So there must exist some value  θ 0  <  
˜ θ   (possibly  θ _ ) such that v (t ( ̃ θ  )) ≥ [1 − p (m (θ) − θ)]v (t (m (θ))) for θ ∈  [  θ 0 ,  ̃ θ   ) .  
Let θ →  ̃ θ  , this is exactly the definition of continuity. Now notice that

 v′t ′ ( ̃ θ  ) = v ( ̃ θ  ) p′ (0; α) ⇔   ∂ _ 
∂ θ

   v  ( t (θ) )   |  ̃ θ    =   ∂ _ 
∂ θ

    [ 1 − p (m (θ) − θ) ]  v  ( t  ( m (θ) )  )   |  ̃ θ   

or   ∂ _ ∂   θ  u  | r  =   ∂ _ ∂   θ  u  | L  at  ̃ θ  . So u is differentiable. Condition (3) is a pasting condition 

at  ̃ θ  .

LEMMA 7: The mapping m : Θ ↦  is piece-wise weakly convex in θ.

PROOF: 
Take first  ̃ θ   ∈ ( θ _ ,  

_
 θ  ). m(θ) is increasing and a.e. differentiable by application of 

Lemma 1, with m( θ _ ) >  θ _  for any  ̃ θ   >  θ _ . Because u is continuous and differentiable,  
li m θ↑ ̃ θ    m(θ) = θ. Suppose now that m(θ) − θ were increasing; then dm(θ)/dθ > 1 and 
li m θ↑ ̃ θ    m(θ) ≠ θ; so m(θ) − θ must be decreasing, and consequently, dm(θ)/dθ < 1.  
Therefore m(θ) is convex when  ̃ θ   ∈ ( θ _ ,  

_
 θ  ). Now extend  ̃ θ   to  

_
 θ   to obtain Case 3.

LEMMA 8: The message space  ̂     is the optimal message space.

PROOF: 
Proposition 1 of Roger (2012) shows that the principal is at least weakly better 

off extending the message space from Θ to  ̂     (strictly when truthful revelation is 
impossible, i.e., when  ̃ θ   ≥  

_
 θ    ). Lemma 2 of the same paper extends the Revelation 

Principle: there is no gain by using richer message spaces than  ̂    . It is immediate that 
restricting  ̂     by truncating it from the bottom (say, min m >  ̂  m  ( θ _ )) does not help. It 
induces a measure of types to overstate their report beyond what is privately optimal 
(given by condition (2)), for which they have to be compensated (the agent is risk-
averse). Last, considering a grid of messages of the form M =  {  m 0 ,  m 1 , … ,  m i , …  m n  }   
also does not help.

First take as given that the transfer function must be monotone increasing, and 
consider an arbitrary set M and two arbitrary points  m i ,  m i+1  ∈ M.22 (Using any such 
grid will be shown to be dominated by using an interval  ̂    , so we need not worry 
whether that grid is optimal.) By monotonicity of t, t( m i+1 ) ≥ t( m i ) and agent θ 
reports  m i+1  over  m i  if and only if

  v  ( t ( m i+1 ) )  [ 1 − p ( m i+1  − θ) ]  ≥ v  ( t ( m i ) )  [ 1 − p ( m i  − θ) ] .

22 This is established in a companion paper, Roger (2012).
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Because M is a grid, there exists some  θ i  such that

  v  ( t ( m i+1 ) )  [ 1 − p ( m i+1  −  θ i ) ]  = v  ( t ( m i ) )  [ 1 − p ( m i  −  θ i ) ] ,

and for types to the “left” of  θ i , t = t( m i ), while to the right of  θ i , t = t( m i+1 ). 
Similarly for pairs of messages  m i−1 ,  m i  and  m i+1 ,  m i+2 , and so on. That is, offering 
the agent a grid amounts to offering a transfer scheme that is a step function of the 
type. With this, the agent’s ex post expected utility

  u = v  ( t ( m i ) )  [ 1 − p ( m i  − θ) ] 

is no longer monotonic in θ; it reaches a local maximum at θ =  m i  and local minima 
at  θ i−1  and  θ i  . In contrast

  u = v  ( t  (  ̂  m   (θ) )  )  [ 1 − p ( ̂  m   (θ) − θ) ] 

is monotone (increasing) by application of the Envelop Theorem when  ̂  m  (θ) is 
continuous.

Suppose there exists a scheme (t ( m i ),  m i ),  m i  ∈ M that is optimal and induces 
effort  

_
 a  . Let w (θ) = v (t ( m i  (θ)))[1 − p ( m i  (θ) − θ)], where  m i  (θ) ∈ arg ma x  m i ∈M  u, 

so that a solution to this problem can be represented as (w (θ),  _ a  ). The ex ante 
expected utility reads

  피 [u (w)] =  ∫  
Θ
  

 
   w (x) dF (x | a).

By Proposition 1 of Carlier and Dana (2005), there exists a nondecreasing function 
z(θ) (the nondecreasing rearrangement of w) such that, for any fixed a,

  피  [ u(w) ]  =  ∫  
Θ
  

 
   w (x) dF (x | a) =  ∫  

Θ
  

 
   z (x) dF (x | a) = 피  [ u (z) ] .

By Lemma 2 of Carlier and Dana (2005), (z(θ),  _ a  ) also represents a solution; here 
it can be constructed as z (θ) = v (t ( ̂  m  (θ)))[1 − p ( ̂  m  (θ) − θ)]. Furthermore, for 
the principal,

   ∫  
Θ
  

 
   s (z (θ), θ) dF (x |  _ a  ) ≥  ∫  

Θ
  

 
   s (w (θ), θ) dF (x |  _ a  )

with a strict inequality if w(θ) is not monotonic—which is the case here.
It is immediate that the claim extends to any other modification of  ̂    , such as 

restricting it to be disjoint intervals or combinations of intervals and points.
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Appendix B: Proofs

PROOF OF LEMMA 1:
By pointwise optimization of Problem 1. Below  ̃ θ  , m (θ) > θ, so the transfer  

t sB  ≡ t (m (θ)), while above  ̃ θ  ,  t  s  ≡ t(θ). Notice that  θ a  ≤  ̃ θ  , otherwise there exists 
an interval [ ̃ θ  ,  θ a ] where  t  o  is constant and the agent reports truthfully. But this can-
not be optimal by (2).

PROOF OF LEMMA 2:
Fix the transfer schedule t; by optimality of the message  ̂  m  (θ),  

(1 − p) v (t ( ̂  m  (θ))) > v (t (θ)), ∀θ <   ̃  θ  and  ̂  m  (θ), (1 − p) v (t ( ̂  m  (θ))) ≥ v (t (θ)), 
∀θ ≥  ̃ θ  . So for any given action a,  ∫  Θ   

   (1 − p) v (t ( ̂  m  (θ))) dF ≥  ∫  Θ   
   v (t (θ)) dF and 

therefore  ∫  Θ   
   (1 − p) v (t ( ̂  m  (θ))) d F  a  ≤  ∫   Θ   

   v (t (θ)) d F  a  by concavity in a. These lat-
ter two inequalities become strict as soon as  ̃ θ   >  θ _ .

PROOF OF LEMMA 3:
The existence, sufficiency and uniqueness of such contract is shown in JKS (in 

particular, they show the multipliers μ, λ exist and are nonnegative). To construct 
the contract, fix some action  a o  and take the  first-order condition. We know μ = 0 
necessarily, so below  θ a  the transfer must be such that 1/v′ remains nonnegative. To 
show that the multiplier λ is positive, fix some a. Integrate 1/v′ over Θ:

  피 θ   [   1 _ 
v′ ( t  o )

   ]  = κ  ∫  
 θ _ 
  
 
_
 θ  
  dF (x | a) + λ  ∫  

 θ a 
  
 
_
 θ  
    
 f  a  _ 
f
   dF (x | a) = κ + λ  ∫  

 θ a 
  
 
_
 θ  
   f  a  (x | a) dx,

where κ ≥ 0. That is,

  0 <  피 θ   [   1 _ 
v′ ( t  o )

   ]  −   1 _ 
v′  (  t  o  (θ) ) 

    | θ≤ θ a   = λ  ∫  
 θ a 
  
 
_
 θ  
   f  a  (x | a) dx

(unless v′ = ∞ for some t and that t is a constant). For any increasing  t  o  on some 
measure of Θ, the inequality must hold as 1/v′ is increasing. Because  f  a /f ≥ 0 on  
 [  θ a ,  

_
 θ   ]  and strictly for at least a positive measure, λ > 0 necessarily.

PROOF OF PROPOSITION 1:
Fix a. Rewrite the first-order condition as v′ ( t  o ) =   ( κ + λ   f a /f   )  −1 ; let h ≡ (v′   ) −1 .  

The function h( ⋅ ) is continuous because v′ is also continuous, so  t  o  ≡  
h (   [ κ + λ   f  a /f   ]  −1  )  is a continuous function. To show continuity at  θ  a  , recall that 

λ    f  a 
 _ f    |  θ a   = 0 and  f  a /f is continuous in θ, so continuity at  θ  a  follows. For the second part 

of the proposition, restrict attention to θ ≥  θ  a  and define τ (θ) ≡  t  o  ◦ m(θ). Then 

rewrite the FOC as v′ (τ) −   ( κ + λ    f  a 
 _ f   )  

−1
  = 0, where τ (θ) is a.e. differentiable; 
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differentiate w.r.t. θ to find v″ τ  ′ + λ   d _ 
dθ    (    f  a 

 _ f   ) /  ( κ + λ     f  a 
 _ f   )  

2
  = 0. This verifies τ  ′ > 0 

and therefore t ′ > 0 as required since   dm _ 
dθ   > 0. Rearrange this expression and rede-

fine the variables

  τ  ′ = −λ   1 _ 
v″

     
  d _ 
dθ    (    f  a 

 _ f   ) 
 _  

  ( κ + λ    f  a 
 _ f   )  

2
 
   .

 

"

 
()*

 
Y

 X

Then τ  ″ ≥ 0 ⇔  (   dY _ 
dθ   X +   dX _ 

dθ   Y )  ≤ 0. With Y < 0, rewrite the second condition as

    dY _ 
dθ

   X ≤ −   dX _ 
dθ

   Y ⇔   d _ 
dθ

   ln − Y ≤   d _ 
dθ

   ln X,

    d _ 
dθ

   ln −   1 _ 
v″

   ≤   d _ 
dθ

   ln  (     d _ 
dθ    (    f  a 

 _ f   ) 
 _  

  ( κ + λ    f  a 
 _ f   )  

2
 
   ) .

Since the ratio    f  a 
 _ f   is increasing concave, the RHS is negative. It is immediate to 

verify by differentiation that the LHS is positive, so the necessary and sufficient 
condition cannot hold. Hence τ  ″ < 0 (where it is differentiable), that is, the effective 
transfer τ (θ) is concave in the type. To show it is concave in the message, call on 
Lemma 7 and observe that τ is the composition of the function t ( ⋅ ) and the convex 
function m(θ). Therefore t( ⋅ ) must be concave in m. For the last item, observe that at  
˜ θ  , m( ̃ θ  ) =  ̃ θ   by (3)—the agent is truthful. Thus, under  t  o ( ⋅ ):

(B1)  v  (  t  o  ( ̃ θ  ) )  =  [ 1 − p (m ( ̃ θ  ) −  ̃ θ  ) ]  v  (  t  o   ( m ( ̃ θ  ) )  )  = v  (  t  o   ( m( ̃ θ  ) )  ) 
 ⇔   t  o ( ̃ θ  ) =  t  o   ( m( ̃ θ  ) ) 
directly from (3). From Lemma 1,  t  o (m(θ)) =  t  sB (m(θ)) for θ ≤  ̃ θ   and  t  o (θ) =  t  s (θ)  
for θ >  ̃ θ  . Both these transfer functions are continuous on their respective domains. 
Thus by (B1) I have shown that li m θ↑ ̃ θ    t(m(θ)) =  t  o (m( ̃ θ  )) =  t  o ( ̃ θ  ) =  lim θ↓ ̃ θ    t(θ), 
which is the definition of continuity. Next, the right-derivative of  t  o  at  ̃ θ   can be 

denoted   d t  o  _ 
dθ    |  ̃ θ   , while the left-derivative is   d t  o  _ dm     dm _ 

dθ    |  ̃ θ   , where dm/dθ  |  ̃ θ    = 1 since 

m(θ) = θ at this point. Using this one more time,   d t  o  _ dm     dm _ 
dθ    |  ̃ θ    =   d t  o  _ 

dθ    |  ̃ θ    ; i.e., the left- 

and right-derivative are identical at  ̃ θ  , which defines differentiability. Last, any 
amount lower than zero is not binding. Take  t  o  to be zero below  θ   a o  . Then by appli-
cation of (3) and Lemma 6,  ̃ θ   >  θ   a o  . (There is a kink at  θ   a o  , so Lemma 6 precludes  
˜ θ   =  θ   a o  . Economically, the LHS of (3) is the marginal benefit of misreporting and 
the RHS the marginal cost; at  θ   a o   the former is positive but the latter is 0, so it cannot 
be the point of indifference). All things otherwise equal, having  ̃ θ   interior is costly 
to the principal in that the expected transfer is higher (otherwise the agent would not 



www.manaraa.com

voL. 5 no. 4 77roger: contract theory

misreport) and so is the agent’s optimal action. So the principal may have incentives 
to lower  ̃ θ  . The smallest possible change, dθ, requires a fixed γ > 0 to be paid for 
all types (not just below  θ  a o  ). So the increase in expected cost is γ > 0, and because 
dθ has measure zero, it alters neither the agent’s moral hazard constraint (6) nor her 
information revelation problem (4). Calling on continuity completes the argument 
for any measure ∫ dθ.

PROOF OF COROLLARY 1: 
Take any two  θ 1  <  θ 2  and suppose that truthful revelation holds at  θ 1 , i.e.,  

v′  t′ ( θ 1 ) ≤ p′(0) v (t ( θ 1 )). Because  t  o  is everywhere nondecreasing and concave 
(and so is v( ⋅ )), it must therefore be that v′ t  ′  ( θ 2 ) ≤ v′t  ′ ( θ 1 ) ≤ p′(0)v(t( θ 1 )) ≤ 
p′ (0) v (t( θ 2 )). Therefore the agent also reveals herself truthfully at  θ 2 ; she does 
not jump away from truth telling.

PROOF OF PROPOSITION 2: 
Construct the Lagrangian with the objective function and the constraints (4)–(6). 

Apply the Envelop Theorem to the first constraint. Because  ̃ θ   ≡  ̃ θ  (α, t), Leibnitz 

rule gives an additional term  ( e.g., p(m( ̃ θ  ) −  ̃ θ  ; α)t(m( ̃ θ  )) f  ( ̃ θ   | a)   d ̃ θ   _ dα   ) . But 

it is naught at  ̃ θ  , where m( ̃ θ  ) =  ̃ θ  . This gives the first-order conditions found in 
Lemma 1, as well as (11). When  ̃ θ   =  θ _ , this latter condition is meaningless. In this 
case the level of investment is determined by (3) at  θ _ , i.e., (10).

PROOF OF PROPOSITION 3: 
The following will be useful in several instances. Let  a ∗  solve the agent’s moral 

hazard constraint (6). Differentiate (6) with respect to t :

(B2)  0 =  ∫  
 θ _ 
  
 ̃ θ  
  v′ [1 − p] d F  a  (x | a) +  ∫  

 ̃ θ  
  
 
_
 θ  
  v′ d F  a  (x | a)

 +   d a ∗  _ 
dt

    [  ∫  
 θ _ 
  
 ̃ θ  
  v  ( t  ( m (x) )  ) [1 − p (m (x) − x)] d F  aa  (x | a) 

 +  ∫  
 ̃ θ  
  
 
_
 θ  
  v  ( t (x) )  d F  aa  (x | a) − c″ (a) ] . 

Since the term in the brackets is the agent’s second-order condition, it is nega-
tive. Therefore   d a ∗  _ dt   > 0. To prove item (i), consider two distributions  F  1 (θ | a) and  

 F  2 (θ | a), where  F  2  is a mean-preserving spread of  F  1  (see Rothschild and Stiglitz 

1970). Fix t ; because  F  1  dominates  F  2  in the second order sense, it follows from (6) 
that at  a ∗ 

(B3)   ∫  
 θ _ 
  
 ̃ θ  
  v [1 − p] d F  a  2  +  ∫  

  ̃ θ 
  
 
_
 θ  
  v d F  a  2  <  ∫  

 θ _ 
  
 ̃ θ  
  v [1 − p] d F  a  1  +  ∫  

 ̃ θ  
  
 
_
 θ  
  v d F  a  1 

by application of the envelop theorem (to the messages). Now define the following 
variable  θ 2  =  θ 1  + ϵ, where  θ 2  ∼  F  2  and  θ 1  ∼  F  1  (so  θ 2  is more risky than  θ 1 , and 
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(B3) follows). Consider again (6), as under  F  1 , and differentiate with respect to ϵ 
at ϵ = 0:

   da _ 
dϵ

    [  ∫  
 θ _ 
  
 ̃ θ  
  v  ( t  ( m (x) )  ) [1 − p (m (x) − x)] d F  aa  1

   (x | a) 

 +  ∫  
 ̃ θ  
  
 
_
 θ  
  v  ( t (x) )  d F  aa  1

   (x | a) − c″ (a) ] 
    +   d _ 

dϵ
    [  ∫  

 θ _ 
  
 ̃ θ  
  v [1 − p] d F  a  1  +  ∫  

 ̃ θ  
  
 
_
 θ  
  v d F  a  1  ]  = 0.

By (B3) the last term is negative, so from (B2)   da _ dϵ   < 0. Letting da/dϵ  
≡ (da/dt)(dt/dϵ), dt/dϵ < 0 as claimed. To show (ii), consider a family of util-
ity functions v (t; r) parametrized by r ; risk aversion (i.e., the concavity of v( ⋅ ;  ⋅ )) 
increases in r. Suppose for simplicity that v(t; r) is continuous and differentiable in 
r (as well as t). For a fixed action a, we know that

    d _ 
dr

    [  ∫  
 θ _ 
  
 ̃ θ  
  v (t; r)[1 − p] dF (x | a) +  ∫  

 ̃ θ  
  
 
_
 θ  
  v (t; r) dF (x | a) ]  < 0

using the envelop theorem again. That is, equivalently, for any two  r 2  >  r 1 ,  
 ∫    θ _   

 ̃ θ    v (t;  r 2 )[1 − p] dF(x | a) +  ∫  
  ̃ θ 
   

_
 θ    v (t;  r 2 ) dF(x | a) <  ∫   θ _   

 ̃ θ    v(t;  r 1 )[1 − p] dF(x | a) +  

∫  
 ̃ θ  
   

_
 θ    v(t;  r 1 ) dF(x | a). It then follows from (6) that  a ∗ ( r 2 ) <  a ∗ ( r 1 ); equivalently, 

 differentiating (6)

(B4)  0 =   d _ 
dr

    [  ∫  
 θ _ 
  
 ̃ θ  
  v (t; r)[1 − p] d F  a  (x | a) +  ∫  

 ̃ θ  
  
 
_
 θ  
  v (t; r) d F  a  (x | a) ]  

 +   da _ 
dr

    [  ∫  
 θ _ 
  
 ̃ θ  
  v (t; r)[1 − p] d F  aa  (x | a) +  ∫  

 ̃ θ  
  
 
_
 θ  
  v (t; r) d F  aa  (x | a) − c″ (a) ] . 

Because the first term of (B4) is negative it follows that da/dr < 0 as well. Making 
use of the fact that da/dt > 0 completes the argument. To prove (iii), consider two 
cost functions  c 1 (a),  c 2 (a) such that ∀a,  c 2  >  c 1 . Because  c  i  ′ ,  c  i  ′′ ,  c  i  ′′′  > 0,  c 2  >  c 1  ∀a 
implies  c  2  ′   >  c  1  ′   ∀a. Fix t, from (6) we have that  a ∗ ( c 2 ) <  a ∗ ( c 1 ). By (B2) therefore 
t(θ,  c 2 ) < t(θ,  c 1 ) ∀θ (with obvious notation). For the last item, suppose the princi-
pal’s payoff is some increasing function π(θ). From (9) it follows that  a  o  increases, 
and from (B2) so does the transfer t. To complete the proof, apply Lemma 2.
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